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Abstract

The multiscale structure of heterogeneous porous media prevents a straightforward
numerical treatment of the underlying mathematical flow models. In particular, fully
resolved flow simulations are intractible and yet the fine-scale structure of a porous
medium may significantly influence the coarse-scale properties of the solution (e.g., av-
erage flow rates). Consequently, homogenization or upscaling procedures are required
to define approximate coarse-scale models suitable for efficient computation. Unfortu-
nately, inherent in such a procedure is a compromise between its computational cost
and the accuracy of the resulting coarse-scale solution. In general, most popular up-
scaling methods do not balance these competing demands. In this paper we highlight a
new efficient, numerical method, which combines our recent work on multigrid homog-
enization (MGH) [23, 25] with the work of Dvořák [14] to compute bounded estimates
of the homogenized permeability for single phase saturated flows. Our approach is
motivated by the observation that the coarse-scale influence of multiscale structures
are captured automatically by robust variationally defined multigrid methods. The
effectiveness of this new algorithm is demonstrated with numerical examples.
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1 Introduction:

The mathematical modeling of flow in porous media is playing an increasingly important
role in the forecasting of petroleum reservoir performance, groundwater supply and subsur-
face contaminant flow. However, even with the increasing power of computers, a critical
underlying problem in the numerical treatment of these models is the multiscale structure
of heterogeneous geological formulations. Specifically, fully resolved simulations are compu-
tationally intractable because the length scales typically observed in sedimentary laminae
range from the millimeter scale upward [27], while the simulation domain may be on the
order of several kilometers. Yet, the fine-scale variations of the model’s parameters (e.g.,
structure and orientation of laminae) significantly affect the coarse-scale properties of the
solution (e.g., average flow rates). The complexity of this problem is further compounded
by the increasing use of geostatistical techniques to compensate for the sparsity and uncer-
tainty of field data through the generation of a large number of fine-scale realizations of a
particular heterogeneous structure.

Fortunately, in many cases the physical measurements that can be made, or that are of
interest, are not on the fine scale (e.g., pore scale) but are on an intermediate or even coarse
scale (e.g., flow rate at a well). Hence, there is considerable interest in the development of
upscaled or homogenized models in which the effective properties of the medium vary on
a coarse scale suitable for efficient computation, but that accurately capture the influence
of the fine-scale structure on the coarse-scale properties of the solution. Unfortunately,
inherent in such a process is a compromise between its computational cost and the accuracy
of the resulting solution. To demonstrate this competition, and the typical compromises
that arise, we will consider the numerical treatment of the model for single-phase saturated
flow that is given by [8],

u = −K(r)∇p , (1)

∇ · u = Q(r) , (2)

where (1) defines the Darcy velocity u and (2) is a mass balance relation governing the
pressure p and the source-sink term Q(r). The permeability K(r) (which may be interpreted
as the mobility, hydraulic conductivity, or diffusivity) is, in general, highly variable over a
significant range of length scales.

In the following discussion we will work primarily with this model in its second order
form,

−∇ · [K(r)∇p] = Q(r) (3)

and, in particular, we will use the corresponding weak variational form

a(p, φ) =
∫
Ω
(K(r)∇p,∇φ)dΩ =

∫
Ω
QφdΩ ∀φ ∈ H1

BC(Ω) (4)

where H1
BC(Ω) = {φ ∈ H1(Ω)|φ subject to BCs}, a(p, φ) is referred to as the energy inner

product and a(p, p) is the energy norm.
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Figure 1: The permeability tensor of a porous medium is specified on each fine-scale cell
Fi,j, and must be upscaled or homogenized over each coarse-scale or computational cell Ci,j.

This paper is organized as follows. In Section 2 a brief overview of homogenization and
upscaling in porous media is given, with particular emphasis on single phase saturated flows.
We also discuss the recent work of Dvořák which demonstrates that numerical methods
naturally lead to upper and lower bounds of the homogenized permeability. In Section 3
we establish the connection between multilevel iterative solvers and discrete homogenized
models. The resulting multigrid homogenization algorithm (MGH) is discussed in Section 4
and some numerical examples are present in Section 5. Finally we draw our conclusions and
comment on future work.

2 Upscaling/Homogenization

The homogenization of the diffusion operator, and hence the permeability in (3), has been
studied extensively during the last few decades (see [2, 17, 28]). An excellent introduction
is provided by Holmes [16] and recently, two reviews of the literature related to single phase
saturated flow were published [26, 30]. For the purposes of this paper it will necessarily
suffice to highlight a few key points from this vast field.

We begin by making the common assumption that the fine-scale permeability tensor is
constant over each fine-scale cell, K(r) = Ki,j for all r ∈ Fi,j. The objective of a homog-
enization procedure for (3) is to define an equivalent coarse-scale permeability tensor that
is constant over each coarse-scale cell, K̂ (r) = K̂ i,j for all r ∈ Ci,j, and which preserves
certain coarse-scale properties of the fine-scale solution (see Figure 1).
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The majority of existing homogenization methods involve local fine-scale computations
and may be classified as either additive or Laplacian. Additive methods assume that the
equivalent coarse-scale permeability may be defined as an explicit function of the fine-scale
permeability. Motivated by their extremely low cost and the fact that there are isolated cases
for which additive methods are exact (e.g., in one dimension K̂ is given by the harmonic
mean [2, 17]) these methods have been studied extensively (e.g., [11, 12, 13]). Unfortunately,
it was concluded that, in general, there is no single rudimentary average that defines the
exact effective permeability [30]. This inadequacy is a consequence of the interaction of
different length scales. In particular a fine-scale isotropic permeability may give rise to a
coarse-scale anisotropic flow. The simplest example of this behavior is an essentially one-
dimensional structure in two dimensions, such as layered media. The equivalent permeability
parallel to the layers may differ by orders of magnitude from the equivalent permeability
perpendicular to the layers. Moreover, if the layers are not aligned with the coordinate
axes (i.e., the principle axes of diffusion) a full tensor will be required to characterize the
medium on the coarse-scale. Additive methods lack this critical property and hence, they
may introduce extreme errors in coarse-scale simulations.

In contrast most Laplacian methods are capable of constructing full coarse-scale per-
meability tensors, even from an isotropic fine-scale permeability. These methods use the
solution of local fine-scale problems (i.e., solve (3) over a coarse-scale cell Ci,j) to infer the

coarse-scale permeability tensor K̂ i,j of the medium. Ideally, the boundary conditions for
these local fine-scale problems would be consistent with the global fine-scale solution, but
this solution is unknown. A number of schemes have been developed to work around this
apparent short fall [26, 30] and have been applied with varying degrees of success. This may
be surprising given the heuristic nature of these schemes; however, these methods may be
viewed as approximations of more rigorous methods [20].

Specifically, homogenization theory for fine-scale periodic media (i.e., two well separated
scales arise naturally) has a rigorous mathematical foundation (see, e.g., [2, 17]). Primarily
born out of research in composite media the key results have been proven in a number of
ways. In this summary we adopt the terminology of the two-scale asymptotic approach.
Specifically, introducing a small parameter ε > 0 to characterize the fine-scale we write
ρ = r/ε so that (3) may be expressed as a family of linear second order equations

Lε (pε) = −∇ · [K(ρ)∇pε] = Q(r) (5)

pε subject to suitable BCs

where Lε is uniformly elliptic in ε. The pressure and the velocity converge weakly,

pε ⇀ p̂ weakly in H1
BC(Ω)

K(ρ)∇pε ⇀ K̂ ∇p̂ weakly in L1(Ω)

where p̂ is the solution of the homogenized equation

L̂ (p̂) = −∇ ·
[
K̂ ∇p̂

]
= Q(r)

p̂ subject to suitable BCs
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The homogenized permeability may be expressed as,(
K̂ ξ, ξ

)
= min

φ∈H1
p(F )

aρ(ρξ + φ, ρξ + φ) (6)

where ρξ is a linear function such that ξ = ∇ρξ is a constant vector in Rn, the periodic
function space is H1

p (F ) = {φ|φ ∈ H1(F ), φ periodic on F}, and the local energy inner
product is written

aρ(p, φ) =
∫

F
(K(ρ)∇ρp,∇ρφ) dF . (7)

Thus it is apparent that the homogenized permeability minimizes the energy. We note that
the minimization implies that φ is the solution of

aρ(ρξ + φ, ψ) = 0 , ∀φ ∈ H1
p (F ) (8)

Thus the significant cost of this approach is also highlighted: in n dimensions at least n
fine-scale elliptic PDEs must be solved on each coarse-scale cell of the global domain. This
cost is further compounded by the number of fine-scale realizations that may be required.

It is also important to note that these results have been extended to nearly periodic media
(e.g., [6, 29]), thus accounting for the imperfections in real composite media. From our point
of view the key difference is that the local problem (8) becomes a function of the coarse-scale
variable, and similarly the homogenized permeability tensor. It is as an approximation to
this result that the success of heuristic Laplacian methods are best understood. In this
paper we will restrict our attention to the fine-scale periodic case, although the algorithm
we propose does not require this assumption.

One method that attempts to bridge the gap between the low computational cost of
additive methods and the superior accuracy of Laplacian methods is based on a numeri-
cal multilevel renormalization approach [18]. Specifically, renormalization uses the analogy
of resistor networks to approximate an effective diagonal permeability tensor for a 2 × 2
block of fine-scale cells. Applying this technique recursively, a finite number of steps re-
sults in an equivalent diagonal permeability tensor for each coarse-scale cell Ci,j. Thus, the
computational cost is comparable to additive methods, and moreover, the method automat-
ically handles anisotropies that are aligned with the coordinate axes. However, there are
two significant weaknesses. First, the resistor analogy implicitly defines artificial boundary
conditions that impose one-dimensional flows in each of the coordinate directions. These
artificial boundary conditions are applied at each step in the recursion, and therefore, may
generate significant errors in the homogenized permeability [24]. Second, the homogenized
permeability is at most a diagonal tensor, and hence, for cases in which the principle axes of
diffusion are not aligned with the coordinate axes, the errors may be severe. In contrast our
multigrid numerical homogenization algorithm [25] (also see, [22, 23]) captures the essential
features of the rigorous asymptotic analysis (i.e., symmetric positive definite tensor) without
requiring the solution of a single elliptic PDE.
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2.1 Upper and Lower Bounds

Recently, Dvořák [14] noted that Ritz finite element (FE) discretizations of (8) could be
used to compute an upper bound of the homogenized permeability. In particular, FE dis-
cretizations have test and trial functions that span a finite dimensional subspace of H1

p (F ),
and hence, they necessarily overestimate this minimal energy. He then noted that the dual
formulation (i.e., the weak form of (1) and (2)) could be used to obtain a lower bound. In
particular, in two dimensions he showed that the stream function formulation could be used
to write this dual problem in the form,

K̂
∗

= [det( K̂ aux)]
−1 K̂ aux (9)

where K̂ aux is given by the auxillary dual problem

( K̂ auxξ, ξ) = min
φ∈H1

p(F )
a∗ρ(ρξ +∇φ, ρξ +∇φ) (10)

in which a∗ρ is given by (7) with K(ρ) replaced by [det(K(ρ))]−1K(ρ). Hence, at least in two
dimensions, it is straightforward to bound the homogenized permeability.

3 Multigrid Solvers

In many cases the numerical simulation of a mathematical model ultimately relies on the
solution of a discrete, often linear, system of equations. Moreover, these systems are typically
large and sparse, suggesting that the necessary efficiency would be best provided by iterative
methods. An important class of iterative methods, namely multigrid methods, has received
considerable attention since Brandt’s [4] landmark paper in 1977. Early work on multigrid
algorithms focused on the solution of second order elliptic PDEs, although subsequently
these methods have been extended to a wide variety of applications (e.g., non-linear PDEs,
integral equations). In particular, early research led to a multigrid algorithm with optimal
efficiency (i.e., an unknown solution vector of length N is found in O(N) operations) for the
solution of finite difference discretizations of Poisson’s equation. However, the application
of this algorithm to diffusion equations with discontinuous coefficients (e.g., (3)) proved to
be fragile, exhibiting convergence rates that were tightly coupled to the jumps or fine-scale
structure of the diffusion coefficient. The solution of this problem proved challenging because
it implicitly contains the same complexities as upscaling or homogenization procedures.
To demonstrate this point and motivate our multigrid homogenization method, we first
highlight the key components of a multigrid algorithm and then discuss the operator-induced
variational coarsening that was first introduced in [1].

For readers unfamiliar with multigrid methods, an excellent introduction is given in [7],
and reviews may be found in [5, 15]. A schematic of a multigrid V-cycle is shown in Figure 2
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for which the key steps are:

• the residual on a particular grid is smoothed
(i.e., it must be well approximated on a coarser grid)

• the residual is then restricted to the coarser grid

• repeat these steps recursively until the coarsest grid is reached

• solve on the coarsest grid

• interpolate to provide a correction on the next finer grid

• smooth the new residual

• repeat to undo the recursive coarsening

Solve

Smooth

Smooth

Smooth

Smooth

Restrict

Restrict

Restrict

Restrict

Smooth

Smooth

Smooth

Smooth

Interpolate

Interpolate

Interpolate

Interpolate

Grid Spacing

h

2h

4h

8h

16h

Figure 2: Schematic of the V-cycle multigrid iterative algorithm.

Thus, it is apparent that efficiency of a multigrid algorithm is tightly coupled to the effec-
tiveness of the smoother (although this component is beyond the scope of this discussion),
the coarse-grid operators

Lk – discrete operator on grid k, k = 1, 2, . . ., (number of grids)−1

and the intergrid transfer operators,

Ik
k−1 – interpolation operator, grid (k − 1) → grid k

Jk−1
k – restriction operator, grid k → grid (k − 1)

Variational coarsening offers one means of defining Lk−1 in terms of Lk, J
k−1
k and Ik

k−1. The
development is given by Brandt [5] and follows naturally upon the restatement of the linear
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system as an equivalent minimization problem. The resulting coarse-grid operator is

Lk−1 =
(
Jk

k−1

)∗
LkI

k
k−1 , (11)

and thus, to preserve symmetry we take Jk−1
k =

(
Ik
k−1

)∗
.

To highlight the connection between the variational definition of the coarse-grid opeators
(11) and homogenization or upscaling procedures we consider the finite element discretization
of (4). The fine-scale discrete operator (with {ψk

j }
nk
j=1, {ϕk

j}
nk
j=1 as trial and test functions on

Level k) may be written (
Lk

)
ij

=
∫
Ω

(
K(r)∇ψk

i ,∇ϕk
j

)
dΩ. (12)

Denoting the elements of the restriction Jk−1
k = (rij)ij and the elements of the interpolation

Ik
k−1 = (pij)ij we have

(
Lk−1

)
ij

=
(
Jk−1

k LkI
k
k−1

)
ij

=
∑
l,m

rjlpmj

(
Lk

)
lm

=
∫
Ω

(
K(r)∇

{∑
m

pmiψ
k
m

}
,∇

{∑
l

rjlϕ
k
l

})
dΩ,

(13)
Therefore, if we define the new basis functions on level k − 1 by

ϕk−1
j =

∑
l

rjlϕ
k
l and ψk−1

j =
∑
m

pmjψ
k
m (14)

we may write the discrete coarse-grid in the form(
Lk−1

)
ij

=
∫
Ω

(
K(r)∇ψk−1

i ,∇ϕk−1
j

)
dΩ (15)

Therefore prolongation and restriction are not only mappings between grid function spaces
but may be viewed, via (14), as part of the discretization on coarse grids. It is in this
way that the variational definition of the coarse-grid operator may be viewed as a discrete
method for calculating homogenized or coarse-scale equations that capture the influence of
the fine-scale heterogeneous structure.

However, variational coarsening is not complete without the definition of the interpola-
tion operator. In fact, the choice of the interpolation operator is critical to the robustness
and efficiency of the resulting multigrid algorithm. For example, from (15) it is apparent
that the common choice of bilinear interpolation generates a coarse-scale model in which the
homogenized permeability is given by the arithmetic average. Therefore, it is not surprising
that use of bilinear interpolation leads to a fragile multigrid algorithm that is not suitable for
practical applications in which the permeability (or components of the permeability tensor)
exhibit fine-scale structure or vary discontinuously by orders of magnitude. A significantly
better choice is operator-induced interpolation [1, 9] (also referred to as matrix-dependent
interpolation) in which the entries in the fine-scale discrete operator are used to define an
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interpolation that preserves certain known properties of the solution. In particular, in [25]
it is shown that that Dendy’s operator-induced interpolation [9] approximately enforces the
continuity of the normal flux through the vertical face shown in Figure 3 in the weak integral
sense

lim
x→x−

∫ yj+1

yj−1

(F · x)dy = lim
x→x+

∫ yj+1

yj−1

(F · x)dy . (16)

The continuity of the normal flux is a fundamental property of the original PDE, one that
bilinear interpolation violates. A discussion of the one-dimensional case, for which this
approach is exact, is given in [15, 23].

(k,l)

( i,j)

coarse-grid

line

(k,l)

( i,j)

coarse-grid

line

(a) (b)

Figure 3: (a) Interpolate the fine-grid point, “•”, from the coarse-grid points, “blacksquares”.
(b) The objective is to preserve the continuity of the normal flux through the vertical inter-
face at xi (i.e., the shaded region).

4 Multigrid Homogenization

The objective of multigrid homogenization is to use operator-induced variational coarsening
to compute a constant permeability tensor for each cell of the desired computational grid
(i.e., a coarse-scale grid) without solving any local fine-scale flow problems. However, the
operator-induced variational coarsening produces the coarse-grid discrete operator and not
the permeability tensor. Thus, in [25] we developed a local expression for the cell-based
permeability tensor in terms of the coarse-grid stencil (see Figure 4 for stencil nomenclature).
For the fine-scale periodic case this result may be expressed in a simplified form.
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Theorem 1 Consider the conforming bilinear finite element discretization of (3) with con-
stant permeability, K(x, y) = K̂ (i.e., the unknown homogenized coefficient) and subject
to periodic boundary conditions on a rectangular domain Ω. In addition, assume a tensor-
product grid with a constant grid spacing in each coordinate direction that is denoted by
(hx, hy). An exact expression for the permeability tensor is given by

K̂ k,l =

 hx
hy

{
SE

i,j + SNE
i,j + SNW

i+1,j

} (
SNE

i,j − SNW
i+1,j

)(
SNE

i,j − SNW
i+1,j

)
hy
hx

{
SN

i,j + SNE
i,j + SNW

i+1,j

}  . (17)

where (i, j) denotes the vertices and (k, l) = (i+ 1
2
, j+ 1

2
) denotes the cell centers of the grid.

i,j
W

-S NW
i,j -S i,j

NE

-S i,j
E

-S i,j
SE-S i,j

SW

-S i,j
N

i,j
S-S

S-S i,j
O

Figure 4: Compass-based definition of an arbitrary 9-point stencil.

The proof of Theorem 1 that is given in [25] utilizes a local flux analysis. Subsequently, in
[21] we showed that this expresssion can be derived using the FE basis function approach
that is given in [23]. To apply (17) it is necessary to ensure that the same stencil resides
at each point in the coarsest grid. This may be accomplished by using a 3× 3 tiling of the
representative cell to define the homogenization domain Ω (see Figure 5). Thus, combining
the expression for K̂ given by (17), the analysis of Section 3 and the upper and lower bound
results of Dvořák (Section 2.1) yields the numerical multigrid homogenization algorithm for
periodic media (MGH).
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(a) (b)

Figure 5: (a) 12×12 computational mesh is superimposed on a 3×3 tiling of representative
cells. (b) 3 × 3 computational mesh on the coarsest grid. The domain is now composed of
homogenized cells.

ALGORITHM 1: Multigrid Homogenization for Periodic Media (MGH)

1. Upper Bound

• For (8) construct the conforming bilinear FEM stencil for a 3× 3 tiling of
the representative cell on a sufficiently fine 3 · 2k−1 × 3 · 2k−1 uniform grid.

• Construct the coarse-grid operators with operator-induced coarsening [10].

• Compute the upper bound K̂
(bb)

u on the 3× 3 grid with (17).

2. Lower Bound

• For the auxillary form of (8) construct the conforming bilinear FEM stencil
for a 3× 3 tiling of the representative cell on the previously selected grid.

• Construct the coarse-grid operators with operator-induced coarsening [10].

• Compute K̂
(bb)

aux on the 3× 3 grid with (17).

• Compute the lower bound K̂
(bb)

l with (9)

3. Average the upper and lower bounds to obtain, K̂
(bb)

a
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5 Examples:

5.1 Dependence on the Relative Diffusivity

In this example, we consider a square inhomogeneity (Figure 6) defined by,

K(x, y) =

{
1 · I2 ∀(x, y) ∈ Ω0

λ · I2 ∀(x, y) ∈ Ω1

to evaluate the dependence of the homogenized permeability tensor on the parameter λ.
Symmetry guarantees that the homogenized permeability tensor is a scalar multiple of the
identity. The upper and lower MGH bounds (obtained with a uniform 768× 768 fine grid)
are displayed in Figure 7. Also appearing in Figure 7 are the results of Bourgat [3] as well as
the harmonic and arithmetic integral means. We note the excellent agreement of both the
upper and lower MGH bounds with the asymptotic results over eight orders of magnitude in
λ. The maximum error in these bounds is approximately 2%, and their arithmetic average
(not shown) is virtually indistinguishable from the exact value on this scale.

We also observe that the arithmetic and harmonic bounds do not yield useful approxima-
tions of the homogenized permeability over the full range of λ. Specifically, the catastrophic
failure of the harmonic mean as λ → 0+ is in contrast with an overestimation of approx-
imately 10% in the arithmetic mean. Moreover, as λ → +∞, the harmonic mean yields
approximately a 10% underestimation, while the arithmetic mean grows linearly, displaying
an arbitrarily large error.

0Ω

1

x

Ω

y

2/3

0
0

1

11/3 2/3

1/3

Figure 6: A representative cell with a square inhomogeneity of diffusivity λ and an area of
1/9 is shown beside the implied periodic structure.

5.2 Shape Dependence

The geometric dependence of the homogenized permeability tensor is demonstrated with
three basic shapes: square, disk, and lozenge (i.e., rotated square), which are shown in
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Figure 7: Dependence of homogenized diffusivities on the relative diffusivity λ.

Figure 8(a)-(c). The permeability tensor of these representative cells is defined by

K(x, y) =

{
1 · I2 ∀(x, y) ∈ Ω0

10 · I2 ∀(x, y) ∈ Ω1
.

In all cases, the area of Ω1 is 1/4. Moreover, symmetry ensures that the homogenized
permeability tensor will also be a scalar multiple of the identity. A comparison of the results
that we obtained with a 768× 768 fine grid and those found in [3] is summarized in Table 1.
These results demonstrate that the relative behavior of the upper and lower MGH bounds

x

y

0 1

1

0

1

Ω0

Ω

0Ω

1Ω

1

x

y

0 1
0

1

0Ω

Ω

x

1

y

0 1
0

(a) (b) (c)

Figure 8: Three inhomogeneities with an area of 1/4, but different shapes.
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is similar to the rigorous treatment of Bourgat. Moreover the arithmetic average of these
bounds yields an excellent approximation of the homogenized permeability, with relative
errors of less than 1%. In contrast many popular alternatives are based solely on volume
fraction (e.g., Hashin-Shtrikman bounds [26], simple integral averages) and hence, would
yield the same result in all three cases. For example, the two-dimensional harmonic average
is the same in all three cases and underestimates the asymptotic value by approximately
17%.

Table 1: Shape dependence of the homogenized permeability.

Shape Bourgat K̂(bb)
u K̂(bb)

l K̂(bb)
a % Error

Square 1.548 1.5979 1.4923 1.545 0.19
Disk 1.516 1.5631 1.4740 1.519 0.20
Lozenge 1.573 1.6079 1.5114 1.560 0.83

5.3 A Dense Homogenized Permeability Tensor

To demonstrate that an isotropic inhomogeneity may lead to a dense tensor, Bourgat [3]
considered the L–shaped region shown in Figure 9, with the following permeability tensor,

K(x, y) =

{
1 · I2 ∀(x, y) ∈ Ω0

10 · I2 ∀(x, y) ∈ Ω1
.

The asymptotic computation of Bourgat gives

K̂
(as)

=

[
1.915 −0.101
−0.101 1.915

]
= Q

[
2.016 0

0 1.814

]
QT ,

where the matrix of eigenvectors Q is given by

Q =
1√
2

[
−1 1

1 1

]
.

Q defines the principal axes of diffusion, in this case a rotation of 45o.
MGH also gives a full tensor and the average of the MGH upper and lower bounds,

computed with a uniform 1536× 1536 fine grid, is

K̂
(bb)

=

[
1.900 −0.1385
−0.1385 1.900

]
= Q

[
2.039 0

0 1.762

]
QT .

Remarkably, we obtain the exact principal axes of diffusion in this case. The only error is
the scaling in each of these directions, approximately 1.1% and 2.9%, respectively. The error
in the determinant is approximately 1.8%.
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0Ω

1

x

y

Ω

0

5/6

0

1

11/6 3/6 5/6

1/6

3/6

Figure 9: The homogenization of an L shaped inhomogeneity leads to a dense tensor.

5.4 Isotropic Random Permeability

Consider statistically isotropic porous media with the permeability defined by

K = κ(x, y) · I2 , κ(x, y) = ζ− ln(α) , ζ uniformly distrubted in (0, 1) . (18)

For this distribution it is possible to prove that the exact homogenized permeability is simply
the geometric mean, K̂ = α · I2 [19]. However, any finite realization of the random media

Figure 10: A 128× 128 realization of the random permeability defined by (18).

will introduce a slight statistical anisotropy, and hence, the homogenized tensors that we
compute with the MGH algorithm will also exhibit a slight anisotropy. For example, with
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α = 10, the arithmetic average of 10 samples (dimension 256× 256) of the upper and lower
MGH bounds gives

K̂
(bb)

a =

[
8.2021 −0.0016
−0.0016 8.1632

]
. (19)

The slight anisotropy may be quantified by noting that the principle axes of diffusion have
been rotated approximately 2.4o and that the eigenvalues differ by approximately 0.5%.
Thus, the approximation error associated with any of the homogenization methods is signif-
cantly larger than the statistical error, and so, to simplify the comparison we list the (1, 1)
entries of the tensors in Table 2.

Once again the arithmetic and harmonic means exhibit severe errors. In fact, the error in
all approximations of the homogenized permeability increases with increasing α. This is not
surprising because the dynamic range of the fine-scale permability increases from approxi-
mately three orders of magnitude for α = 2 to approximately thirteen orders of magnitude
for α = 10. Moreover, the standard deviation increases from approximately one order of
magnitude for α = 2 to approximately ten orders of magnitude for α = 10. Nevertheless, the
other methods, namely renormalization and MGH, provide reasonable approximations for
this difficult problem. Specifically, for a α = 10 renormalization understimates the homog-
enized permeability by ≈ 41%. Unfortunately, the MGH lower bound provides an estimate
that is very similar to renormalization, displaying an error of 50% for α = 10. This is sig-
nificantly worse than the MGH upper bound, which for α = 10 gives an error of only 10%.
This mismatch in the magnitude of the errors leads to an average value of 8.20, an error of
18%. Although, it is dissapointing that this error is worse than that of the upper bound
alone, it is vital to acknowledge that the error is now bounded. Further research will be
required to understand precisely why the lower and upper bounds behave so differently in
this case, particularly when they were found to be perform similarly in the earlier examples.

Table 2: Homogenization of a random permeability with exact K̂ = α · I2.

α K̂(am) K̂(hm) K̂(re)
l K̂(bb)

l K̂(bb)
u K̂(bb)

a

2 3.21 1.70 1.88 1.824 2.092 1.96
5 6.0E3 2.61 3.73 3.361 5.519 4.44
10 3.1E7 3.30 5.82 4.982 11.42 8.20

6 Conclusions:

The new Multigrid Homogenization algorithm (MGH) offers a balance between computa-
tional expense and solution accuracy that is not found in other upscaling methods. In
particular, it captures fine-scale geometric information that is missed entirely by rudimen-
tary averages without requiring the solution of a single elliptic PDE. These properties of
MGH were demonstrated with different symmetric shapes, and for an isotropic fine-scale
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structure, the “L”, that leads to a full tensor. MGH also achieved impressive accuracy over
eight orders of magnitude in the relative permeability of a square heterogeneity. Moreover,
in these cases, the averaging of the upper and lower bounds significantly improves the ac-
curacy of the homogenized permeability. The method also performs well for the case of
a homogeneous random media, which is more characteristic of porous media realizations.
However, in this case the lower bound is in greater error than the upper bound. Future work
will include the application of MGH to more realistic realizations of porous media and the
testing of the resulting coarse-scale model through a series of flow simulations.

References

[1] R. E. Alcouffe, A. Brandt, J. E. Dendy, Jr. and J. W. Painter, “The Multi-grid Method
for the Diffusion Equation with Strongly Discontinuous Coefficients”, SIAM J. of Sci.
and Stat. Comput., 2, pp. 430–454.

[2] A Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis For Periodic
Structures, Studies in Mathematics and its Applications Volume 5, New York, 1978.

[3] J. F. Bourgat, “Numerical Experiments of the Homogenization Method for Operators
with Periodic Coefficients”, in Computing Methods in Applied Science and Engineering,
I, Eds. R. Glowinski and J.-L. Lions, Springer, Versailles, pp. 330–356, 1977.

[4] A. Brandt, Multi–level adaptive solutions to boundary–value problems, Math. Comp.
31, pp. 333-390, 1977.

[5] A. Brandt, Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics,
The Weizmann Institute of Applied Science, Rehovot, Israel, 1984

[6] M. Briane, “Homogenization of a Non-Periodic Material”, J. Math. Pures. Appl., 73,
pp. 47–66.

[7] W. L. Briggs, A Multigrid Tutorial, SIAM Books, Philadelphia, 1987.

[8] G. Dagan, “Flow and Transport in Porous Formations”, Springer–Verlag, 1989.

[9] J. E. Dendy, Jr., “Black Box Multigrid”, J. Comput. Phys., 48, pp. 366–386, 1982.

[10] J. E. Dendy, Jr., “Black Box Multigrid for Periodic and Singular Problems”, Appl.
Math. Comput., 25, pp. 1–10, 1988.

[11] A. J. Desbarats, “Spatial averaging of Hydraulic Conductivity in 3-Dimensional Het-
ergenous Porous-Media”, Math. Geol., 24, pp. 249–267, 1992.

[12] A. J. Desbarats,”Spatial Averaging of Transmissivity in Heterogeneous Fields With
Flow Toward a Well”, Water Resour. Res., 28, pp. 757–767.

17



[13] L. J. Durlofsky, “Representation of Grid Block Permeability in Coarse Scale Models
of Randomly Heterogeneous Porous-Media”, Water Resour. Res., 28, pp. 1791–1800,
1992.
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[30] X.-H. Wen and J. J. Gómez-Hernández, “Upscaling Hydraulic Conductivities in Het-
erogeneous Media: An Overview, Journal of Hydrology, 183, pp. ix–xxii, 1996.

19


	Introduction:
	Upscaling/Homogenization
	Upper and Lower Bounds

	Multigrid Solvers
	Multigrid Homogenization
	Examples:
	Dependence on the Relative Diffusivity
	Shape Dependence
	A Dense Homogenized Permeability Tensor
	Isotropic Random Permeability

	Conclusions:

